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Abstract

In this paper, we examine the coupled electromechanical behaviour of a thin piezoceramic actuator embedded in
or bonded to an elastic medium under inplane mechanical and electrical loadings. The actuator is characterized by
an electroelastic line model with the poling direction being perpendicular to its length. The theoretical formulations,

governing this electromechanically coupled problem, are based upon the use of singular integral equations in terms
of an interfacial shear stress. A square-root singularity of the resulting shear stress is found at the tips of the
actuator. A new shear stress singularity factor (SSSF) was then obtained by solving these singular integral equations

using Chebyshev polynomial expansions. Typical examples are provided to show the e�ect of the geometry of the
actuator, the material combination and interfacial debonding upon the shear stress singularity factor. # 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

With the emergence of new piezoceramic materials, the concept of using a network of piezoelectric

actuators and sensors to form a self controlling and self monitoring smart system in advanced structural

design has drawn considerable interest among the research community (Gandhi and Thompson, 1992;

Dosch et al., 1995; Varadan et al., 1993). Piezoelectric sensors, which are attached to a structure, can

convert the strain of the structure into electric signals to monitor the deformation of the host structure.

In a reverse procedure, an applied electric ®eld to a piezoelectric actuator will result in a mechanical

deformation of the actuator, which will in turn deform the host structure through load transfer at the
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interface to generate axial forces or bending moments on the structure. In these smart systems, both
electromechanical coupling and material inhomogeneity are involved. The designers of such systems are
constantly faced with the challenge of establishing suitable shapes and positions of actuators to provide
high-performance structures.

One of the most fundamental issues in using integrated actuators in smart structures is to determine
the actuation e�ects being transferred from the actuators to the host and the resulting overall structural
response. Another important aspect related to the design of the integrated smart system is the
determination of interfacial stresses that may result in failure of the structure integrity. An accurate
assessment of the coupled electromechanical behaviour of an integrated structure would, therefore,
require the determination of the local stress distribution in smart structures involving piezoelectric
actuators/inhomogeneities.

In view of its importance to the development of advanced structures, the subject of piezoelectric
actuator has received attention from the scienti®c community. These include the work of Deeg
(1980) and Benveniste (1992) on the single elliptical (ellipsoidal) inhomogeneity in unbounded
piezoelectric materials using the Green's function approach; Dunn and Taya (1993) on the
determination of the e�ective properties of piezoelectric composites using di�erent micromechamcial
models; and the work of Jain and Sirkis (1994) and He et al. (1994) on damage analysis of
piezoceramics. However, relatively few studies have been made to investigate the local stress ®eld
around piezoelectric actuators in smart structures. Crawley and de Luis (1987) ®rst analyzed a
beam-like structure with surface bonded and embedded thin sheet piezoelectric actuators to study
the stresses transfered by the actuator to the host beam. In that analysis, the axial stress in the
actuator was assumed to be uniform across its thickness and the host structure was treated as a
Bernoulli±Euler beam. The result indicated that, for a perfectly bonded actuator, the shear stress
between the actuator and the host beam was transfered over an in®nitesimal distance near the
ends of the actuator. Crawley and Anderson (1990) further developed a Bernoulli±Euler model of
a piezoelectric actuator by considering the linear stress distribution along its thickness. These
models are useful in determining the structural response of composite beams. However, they are
unsuitable for the prediction of the local stress distribution near the ends of an actuator, because
of the limits imposed on the ®eld by the use of Bernoulli±Euler simpli®cation.

Im and Atluri (1989) modi®ed the actuator model presented by Crawley and de Luis (1987) to
investigate a beam with a piezoelectric actuator under general loading. Both the axial and the transverse
shear forces in the beam were considered in formulating the governing equations. A re®ned actuator
model based on the plane stress condition was presented for a beam structure with symmetrically
surface-bonded actuator patches (Lin and Rogers, 1993a, 1993b). The stress distribution in the actuators
and the host beam was determined by using an approximated axial stress ®eld with a parabolic pro®le in
the direction of the thickness of the actuator. The result indicated that this model was in good
agreement with the ®nite element results.

The objective of the present paper is to provide an analytical model of the coupled electromechanical
behaviour of a thin-sheet piezoceramic actuator embedded in or bonded to an elastic medium under
inplane mechanical and electrical loadings. This loading condition corresponds to the case where the
applied mechanical and electrical loads are uniformly distributed along the width of the structure. Since
the main interest of the current study is the local stress concentration and the load transfer near the
actuator, the host structure is assumed to be in®nite. This represents the case where the host structure is
much thicker than the actuator. The analysis is based upon the use of a one-dimensional actuator model
and the solution of the resulting singular integral equations is developed in terms of an interfacial shear
stress. The solution indicates that there exists a square-root singular stress ®eld near the tips of the
actuator. Two aspects of the work are accordingly examined. The ®rst is concerned with determining the
e�ect of the geometry, the material mismatch and electroelastic property of the actuator upon the

X.D. Wang, S.A. Meguid / International Journal of Solids and Structures 37 (2000) 3231±32513232



resulting shear stress singularity factor, while the second is concerned with the possible interfacial
debonding and its e�ect upon the stress distribution in the composite structure.

2. Analysis of a single piezoelectric actuator

Piezoelectric actuators made of thin-sheets are commonly used in structural applications (Crawley and
Anderson, 1990; Hubbard and Bailey, 1985). This type of actuator is quite thin, thus enabling the
application of a high electrical intensity.

Let us now consider the plane strain problem of a thin piezoceramic actuator sheet embedded in or
surface bonded to a homogeneous and isotropic elastic medium, as illustrated in Fig. 1. The half length
and the thickness of the actuator are denoted a and h, respectively. It is assumed that the poling
direction of the actuator is along the z-axis. An electrical ®eld Ez is applied along the poling direction of
the actuator by applying a voltage (V ) between the upper and the lower electrodes of the actuator, with
Ez=V/h=(VÿÿV+)/h.

2.1. The actuator model

Since the actuator thickness is assumed to be very small in comparison with its length, the applied
electric ®eld will mainly result in an axial deformation, and the following assumptions can be made:

(i) sy and uy are uniform across the thickness of the actuator,
(ii) the interfacial shear stress (t ) transferred between the actuator and the host can be replaced by a
distributed body force along the actuator, and
(iii) sz and syz in the actuator can be ignored.

Based upon these assumptions, the actuator can be modelled as an electroelastic line subjected to the
applied electric ®eld and distributed axial force, t/h, as shown in Fig. 2. The equilibrium equation of the
actuator can then be expressed as

@sy
@y
� t

h
� 0: �1�

Since all the load transferred between the actuator and the host can be attributed to t, the two ends
of the actuator can be assumed to be traction free, i.e.

sy � 0, jyj � a: �2�
It should be noted that the modelling of the actuator is similar to the shear lag analysis in composite

Fig. 1. Embedded and surface bonded actuators.
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materials (Cox, 1952; Fukuda and Chou, 1981). However, in the current study no speci®c limitation is
enforced upon the deformation of the matrix.

By integrating Eq. (1) and making use of Eq. (2), the axial stress in the actuator can be expressed in
terms of the shear stress t as

sy� y� � ÿ
� y

ÿa

t�x�
h

dx, �3�

with �a
ÿa

t�x�dx � 0: �4�

The relation between the stress, the strain and the electric ®elds of this actuator model can be
obtained by using the following general constitutive relation:

sy � EaEy ÿ eaEz, �5�

where Ea and ea are e�ective material constants given in Appendix A. The resulting axial strain can then
be expressed in terms of t as

Ey� y� � ÿ 1

Eah

� y

ÿa
t�x�dx� ea

Ea
Ez, jyj < a: �6�

Fig. 2. Actuator model.

X.D. Wang, S.A. Meguid / International Journal of Solids and Structures 37 (2000) 3231±32513234



2.2. Formulation of integral equations

Consider now the deformation of the host elastic medium. The applied force to the host at z= 0 can
be expressed as:

fy �
�ÿt� y� jyj < a
0 otherwise

: �7�

Based upon the fundamental solutions of a whole plane or a half plane subjected to a concentrated
horizontal force (Muskhelishvili, 1953) and making use of the superposition principle, Ey resulting from
the applied force given by Eq. (7) can be obtained as

Ey� y,0�jhost �
2

p �E

�a
ÿa

t�x�
yÿ x

dx, �8�

where

�E �

8>>><>>>:
8�1ÿ n�E

�1� n��3ÿ 4n� embedded

E

1ÿ n2
surface bonded

, �9�

with E and n being Young's modulus and Poisson's ratio of the host structure.
The compatibility of deformation between the actuator and the host structure indicates that

uyjactuator � uyjhost jyj < a, z � 0, �10�

which can be equivalently expressed as

Eyjactuator � Eyjhost jyj < a, z � 0: �11�

Substituting Eqs. (6) and (8) into Eq. (11) gives

2

p �E

�a
ÿa

t�x�
yÿ x

dx� 1

hEa

� y

a

t�x�dx � eaEz

Ea

, jyj < a: �12�

The singular integrals, Eqs. (12) and (4), can be normalized to give�1
ÿ1

�t�z�dz
Zÿ z

� q 0v
�Z
ÿ1

�t�z�dz � 1, jZj < 1�1
ÿ1

�t�z�dz � 0

9>>>>=>>>>;: �13�

The normalized shear stresses are given by

�t�Z� � t�aZ�
�p

, Z � y

a
, �14�

with
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q 0 �

8><>: q
8�1ÿ n�2
3ÿ 4n

embedded

q surface bonded

,

p 0 �

8><>: p
8�1ÿ n�2
3ÿ 4n

embedded

p surface bonded

�15�

and

q � pE
2�1ÿ n2�Ea

, p � qeaEz, v � a

h
: �16�

2.3. Solution of singular integral equations

Eq. (13) is a singular integral equation of the ®rst kind. The solution of it involves a square-root
singularity (Muskhelishvili, 1953) at |Z|=1, which corresponds to the two ends of the actuator, |y|=a. It
can be concluded, according to the present actuator model, that the interfacial shear stress is square-
root singular at the two ends of this perfectly bonded actuator.

The general solutions of �t in Eq. (13) can be expressed in terms of the following expansions of
Chebyshev polynomials,

�t�Z� � 1�������������
1ÿ Z2

p X1
j�0

djTj�Z�, �17�

where Tj are Chebyshev polynomials of the ®rst kind. By truncating the Chebyshev polynomial
expansions to the Nth term and considering the boundary conditions at the following collocation points
along the actuator,

Zk � cos
kÿ 1

Nÿ 1
p, k � 1,2, . . . ,N, �18�

Eq. (13) reduces to

XN
j�1

dj

sin

�
j
kÿ 1

Nÿ 1
p

�
sin

�
kÿ 1

Nÿ 1
p

� "1� q 0v
pj

sin

�
kÿ 1

Nÿ 1
p

�#
� ÿ1

p
, k � 1,2, . . . ,N �19�

The unknown coe�cients dj and the stress ®eld due to the presence of the actuator can be readily
determined by using Eq. (19).

To evaluate the singular behaviour of the interfacial shear stress at the tips of the actuator, we
introduce a new parameter: the shear stress singularity factor (SSSF) S, de®ned by

Sr � lim
y4a
�
�������������������
2p�aÿ y�

p
t� y��
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Sl � lim
y4ÿa�

�������������������
2p�a� y�

p
t� y��: �20�

The SSSF at the left and the right tips of the actuator can be expressed in terms of dj as being

Sl � p 0
������
ap
p XN

j�0
�ÿ1� jdj

and

Sr � p 0
������
ap
p XN

j�0
dj: �21�

3. E�ect of interfacial debonding

High localized stress concentration and poor interfacial conditions can result in partial debonding of
the actuator from the host structure. The debonding will result in increasing the stress concentration and
will therefore change the load transfer between the actuator and that host structure. In this section,
attention will be focused on determining the e�ect of debonding upon a surface bonded actuator.

3.1. Edge debonding

The high level of shear stress at the edges of the actuator may result in an unwanted edge debonding.
For a perfectly bonded actuator, when the shear stress singularity factor S reaches the `interfacial
toughness' Sc, edge debonding will initiate and grow. The debonded part of the actuator has zero
boundary stresses. According to the present actuator model, the debonded part at the edge of the
actuator will have a zero stress distribution. As a result, the e�ective length of the actuator is reduced
from its original length to that of the bonded part. Therefore, the behaviour of an edge debonded
actuator can be simulated by a shorter actuator.

3.2. Interior debonding

Debonding may also occur in the interior of the actuator. Let us consider an actuator occupying the
region tl < y< tr, and is assumed partially debonded in dl < y< dr, as illustrated in Fig. 3.
By making use of the equilibrium equation Eq. (1) and the traction free condition at the two ends of

the actuator, the axial stress in the actuator can be expressed in terms of the shear stress t as follows:

sy� y� �

8>>>>>><>>>>>>:

ÿ
� y

tl

t�x�
h

dx tl < y < dl

sd dl < y < dr

sd ÿ
� y

dr

t�x�
h

dx dr < y < tr

, �22�

where

X.D. Wang, S.A. Meguid / International Journal of Solids and Structures 37 (2000) 3231±3251 3237



sd � ÿ
�dl

tl

t�x�
h

dx �23�

is the axial stress in the debonded part of the actuator.
The resulting axial strain can then be expressed in terms of t as

Ey� y� �

8>>>>>>>>><>>>>>>>>>:

ÿ 1

Eah

� y

tl

t�x�dx� ea

Ea

Ez tl < y < dl

sd � eaEz

Ea

dl < y < dr

1

Eah

"
sdhÿ

� y

dr

t�x�dx
#
� ea

Ea

Ez dr < y < tr

: �24�

3.3. Formulation of integral equations

The half plane to which the actuator is bonded is subjected to the following boundary conditions:

tyz �
�ÿt� y� tl < y < dl and dr < y < tr
0 otherwise

: �25�

The solution for Ey can be obtained, by making use of the fundamental solution of a half space
subjected to a concentrated surface force, as

Ey� y,0�jhost �
2

p �E

"�dl

tl

t�x�
yÿ x

dx�
�tr
dr

t�x�
yÿ x

dx

#
: �26�

The compatibility of deformation between the actuator and the host structure indicates that

Eyjactuator � Eyjhost tl < y < dl, dr < y < tr, z � 0 �27�
and

uy�dr�jactuator ÿ uy�dl�jactuator � uy�dr,0�jhost ÿ uy�dl,0�jhost: �28�
Substituting Eqs. (24) and (26) into Eq. (27) gives

Fig. 3. Partially debonded actuator.
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2

p �E

�dl

tl

t�x�
yÿ x

dx� 2

p �E

�tr
dr

t�x�
yÿ x

dx�

8>>>><>>>>:
1

hEa

� y

tl

t�x�dx � eaEz

Ea

tl < y < dl

1

hEa

� y

dr

t�x�dx � eaEz

Ea

� sd

Ea

dr < y < tr

, �29�

while Eq. (28) can be rewritten as

2

p �E

�dr

dl

(�dl

tl

t�x�
yÿ x

dx�
�dl

tl

t�x�
yÿ x

dx

)
dy � sd � eaEz

Ea

�dr ÿ dl�: �30�

Eqs. (23), (29) and (30) can be normalized as

�1
ÿ1

tl�z�dz
Zl ÿ z

�
�1
ÿ1

tr�z�dz
Zr ÿ z

�

8>>>><>>>>:
qvl

�Zl

ÿ1
tl�z�dz � 1 jZlj < l

ÿqvr

�l
Zr

tr�z�dz � 1 jZrj < 1

, �31�

vl

�Z�l

1

�1
ÿ1

tl�z�dz
Zl ÿ z

dZl � vr

�ÿ1
Z�r

�1
ÿ1

tr�z�dz
Zr ÿ z

dZr � 2�vÿ vl ÿ vr�q
�
s � �eaEz

p

�
, �32�

�1
ÿ1

tl�z�dz � ÿs�
vl

and �1
ÿ1

tr�z�dz � s�
vr

: �33�

The normalized stresses are given by

tl�z� � t�alz� yl�
p

,

tr�z� � t�arz� yr�
p

and

s� � sd

p
, �34�

with
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Zl � � yÿ yl�
�
al, Zr � � yÿ yr�

�
ar

v � a
�
h, vl � al

�
h, vr � ar

�
h

a � 1

2
�tr ÿ tl�, al � 1

2
�dl ÿ tl�, ar � 1

2
�tr ÿ dr�

yl � 1

2
�dl � tl�, yr � 1

2
�tr � dr�

Z�l � 2
vÿ vr

vl

ÿ 1, Z�r � ÿ2
vÿ vl

vr

� 1:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
�35�

3.4. Solution of singular integral equations

The partially debonded actuator can be regarded as two `actuators' subjected to an axial stress sd at
their inner tips, as shown in Fig. 4. Since the application of sd will not change the singular behaviour of
the solution, the interfacial shear stress at the tips of these `actuators' will also be square-root singular.
Therefore, the general solutions of t l and t r, in Eqs. (31)±(33), can then be expressed in terms of the
following expansions of the Chebyshev polynomials,

tl�Zl� �
1�������������

1ÿ Z2l
p X1

j�0
d l
jTj�Zl�

and

tr�Zr� �
1�������������

1ÿ Z2r
p X1

j�0
d r
jTj�Zr�: �36�

If the Chebyshev polynomial expansions are truncated to the Nth term, and Eq. (31) is satis®ed at the
following collocation points at each bonded segment of the actuator given by

Zlk � Zrk � Zk � cos
kÿ 1

Nÿ 1
p, k � 1,2, . . . ,N, �37�

Eq. (31) reduces to

Fig. 4. Equivalent model of a partially debonded actuator.
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XN
j�1

d l
j

sin

�
j
kÿ 1

Nÿ 1
p

�
sin

�
kÿ 1

Nÿ 1
p

� "1� qvl

pj
sin

�
kÿ 1

Nÿ 1
p

�#
�
XN
j�1

d r
j

hÿ
Z2k ÿ 1

�1=2�Zki j
, �������������

Z2k ÿ 1
q

�s�
p

8<: 1

vr

�������������
Z2k ÿ 1

q � q

�
1ÿ kÿ 1

Nÿ 1

�9=; � ÿ1p ,
k � 1,2, . . . ,N

�38�

and

XN
j�1

d r
j

sin

�
j
kÿ 1

Nÿ 1
p

�
sin

�
kÿ 1

Nÿ 1
p

� "1� qvr

pj
sin

�
kÿ 1

Nÿ 1
p

�#
ÿ
XN
j�1

d l
j�ÿ1� j

hÿ
Z2k ÿ 1

�1=2�Zki j
, �������������

Z2k ÿ 1
q

�s
�

p

8<: 1

vl

�������������
Z2k ÿ 1

q � q
kÿ 1

Nÿ 1

9=; � ÿ1

p
,

k � 1,2, . . . ,N

�39�

In addition, Eq. (32) becomes

s�
�
ÿ ln

�����Z�l � ���������������
Z�2l ÿ 1

q ���� ����Z�r � ���������������
Z�2r ÿ 1

q �����ÿ 2�vÿ vl ÿ vr�q
�
�
XN
j�1

d l
j

(
pvl�ÿ1� j

�Z�
l

1

�
hÿ
Z2l ÿ 1

�1=2ÿZl

i j
� �������������

Z2l ÿ 1
q

dZl

)
�
XN
j�1

d r
j

(
ÿ pvr

�ÿ1
Z�r

hÿ
Z2r ÿ 1

�1=2ÿZr

i j
� �������������

Z2r ÿ 1
q

dZr

)

� 2�vÿ vl ÿ vr�:

�40�

From these equations, the unknown coe�cients d l
j and d r

j can be determined. The resulting SSSF at
the left and the right tips of the actuator can be expressed in terms of d l

j and d r
j as

Sl � p
�������
alp
p XN

j�0
�ÿ1� jd l

j

and

Sr � p
�������
arp
p XN

j�0
d r
j : �41�

In addition, the SSSFs at the left and the right ends of the debonding part can be obtained as
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Sdl � p
�������
alp
p XN

j�0
d l
j

and

Sdr � p
�������
arp
p XN

j�0
�ÿ1� jd r

j : �42�

4. The singular behaviour of an interfacial crack

It should be noted that the existence of a square root singularity at the tips of the actuator is based
upon the electromechanical line model. However, the resulting SSSF can be related to the singular
behaviour of the interfacial crack due to interfacial debonding. Such a relation can be established by
using path independent integral in the current composite piezoelectric media.

4.1. Conservative path integral in piezoelectric composites

Pak (1990) introduced a path integral in piezoelectric materials by taking the electric enthalpy density
to be the Lagrangian density of the considered system. The path integral is de®ned by

J �
�
G

�
H dzÿ

�
Tj
@uj
@y
�D

@f
@y

�
ds

�
, �43�

with

Ti � sijnj, D � Dini, �44�
where f is the electric potentialand G is the integration path, with nj being the outward normal of G and

H � 1

2
sijEij ÿ 1

2
DiEi �45�

being the electric enthalpy density. sij, Eij, Di and Ei are the stresses, strains, electric displacements and
electric ®eld intensities. This integral vanishes when it surrounds a perfect piezoelectric material, which is
free of defects and inhomogeneities without body forces and free charges.

The integral de®ned in Eq. (43) can be further extended into cases involving dissimilar piezoelectric
media bonded together through straight interfaces. For two bonded piezoelectric materials (Fig. 5),
consider two separate closed loops given by

G� � G1 � GI�

and

Gÿ � G2 � GIÿ, �46�
with GI+ and GIÿ sharing the same region of the interface and being in the upper and the lower parts,
respectively. The conservative behaviour of the path integral for closed loops implies the existence of the
following relations,
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JG� � JGÿ � JG1
� JG2

� JGI� � JGIÿ � 0: �47�
Since the two bonded piezoelectric media should satisfy the continuity conditions along the interface,

i.e.,

T �i � ÿT ÿi ,

D� � ÿDÿ,

u�i � uÿi

and

f� � fÿ, �48�
the following relation can be obtained,

JG0
� JG1

� JG2
� 0: �49�

This result indicates that for any closed loop G0=G1+G2, which includes part of the interface, JG0
�

0:

4.2. Path integral around an interfacial crack

Let us consider now the case of a piezoelectric actuator which is debonded at the edge to a host
elastic solid, as shown in Fig. 6. According to the conservative property of J, the integral along the
closed loop shown in Fig. 6 will be zero, i.e.,

JGout
� JGtop

� JGend
� JGc� � JGtip

� JGcÿ � 0, �50�
with Gout being the path from A to C, Gtop and Gend along the top and the end of the actuator, Gc+ and
Gcÿ being along the upper and lower surfaces of the crack, and Gtip around the tip of the crack.

Fig. 5. Integral path including a material interface.
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By making use of the boundary conditions that the traction and the electrical displacement at the top
surface and the crack surfaces are zero, the above relations can be reduced to

JGout
� JGend

� JGtip
� 0: �51�

If the crack is much longer than the thickness of the actuator, the end of the actuator can be assumed
to be mechanically free, i.e., sij can be assumed to be zero. According to this condition, JGend

can be
obtained as

JGend
� ÿ1

2

�
Ea � e2a

Ea

�
E 2

z : �52�

4.3. Path integral around an actuator

For the case where the actuator is very thin, the stress ®eld far from the end of a debonded actuator
can be predicted by the current actuator model.

Therefore, the path integral JGout
in Eq. (52) can be determined by using the stress ®eld predicted by

the actuator model. As shown in Fig. 7, JGout
can be divided into two parts, i.e.,

JGout
� J �Gout

� JGAB
, �53�

where �Gout is a path from B to C, which is far from the end of the debonding, GAB is a path across the
thickness of the actuator from A to B. By using the actuator model, JGAB

can be reduced to

JGAB
� 1

2
hEaE2yjB �

1

2
hEaE

2
z , �54�

where Ea is the dielectric constant of the actuator given in Appendix A.
J �Gout

can further be related to the singular ®eld at the tip of the actuator. Let us consider a closed loop
in the host material, as shown in Fig. 8. The conservative behaviour of the path integral indicates that

J �Gout
� J �Gtip

� JGaÿ � 0, �55�

Fig. 6. Integral path around an interfacial debonding.
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in which

JGaÿ �
�B
D

tEy dy, �56�

with t being the interfacial shear stress between the actuator and the host, shown in Fig. 2. By using
Eqs. (1) and (5), the above integral can be obtained as

JGaÿ � ÿ
1

2
hEa

�
E2yjD ÿ E2yjB

�
: �57�

Therefore, Eq. (55) reduces to

J �Gout
� ÿJ �Gtip

� 1

2
hEa

�
E2yjD ÿ E2yjB

�
: �58�

Substituting Eqs. (58) and (54) into Eq. (53) gives

JGout
� ÿJ �Gtip

� 1

2
hEaE2yjD �

1

2
hEaE

2
z : �59�

According to the actuator model, the axial stress of the actuator is zero at the tip of the debonding
region, as given by Eq. (2). When point D approaches this tip, the corresponding axial strain Ey|D can be
determined using the constitutive relation of the actuator Eq. (5) as

Fig. 7. Path integral using the actuator model.

Fig. 8. Integral path in the host material.
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EyjD �
ea

Ea

Ez: �60�

Therefore, by substituting Eqs. (59), (60) and (52) into Eq. (51), the path integral around the tip of
the original interfacial crack can be obtained as

JGtip
� J �Gtip

: �61�

By making use of the asymptotic stress and displacement ®elds near the tip of the debonding region,
the above integral can be further expressed in terms of the shear stress singularity factor, such that

JGtip
� ÿ S2

128Ep

�
�22� 3n�p� 760

7
�1� n�

�
: �62�

This result represents the relation between the path integral around the tip of the real interfacial crack
and SSSF associated with the actuator model. It can then be concluded that the SSSF obtained from
the present actuator model is indeed representative of the singular behaviour of the interfacial
debonding process.

5. Numerical examples and discussions

5.1. Shear stress singularity factor of a perfectly bonded actuator

Fig. 9 shows the normalized shear stress singularity factor, S� � ÿS=p 0 ��������
2ph
p

, of a perfectly bonded
actuator. The behaviour of this composite structure is governed by three parameters, q ', v and p ', given
by Eqs. (15) and (16). It is interesting to observe that with the increase of v=a/h, S� increases and
approaches a constant which corresponds to the case of an in®nitely long actuator.

5.2. Stress distribution at the interface

The interfacial shear stress, which transfers the actuation energy between the actuator and the host
structure, can be determined directly from the solution given in the previous section. Fig. 10 shows a
typical shear stress distribution of a surface bonded actuator for q = 2.28 and v = 5.0, where
t�=tyz ( y,0)/p.

To verify the validity of the present actuator model to predict the interfacial stress distribution, the
ANSYS software was used to numerically analyze the stress ®eld of the same problem using the real
geometric con®guration of the actuator. The comparison shows a limited discrepancy between the ®nite
element and analytical results near the tips of the actuator. This discrepancy is caused by the use of
di�erent actuator models in the analyses. In the analytical work, one-dimensional representation was
used to model the behaviour of the actuator, while in the ®nite element analysis a two-dimensional
model was used. The current one-dimensional actuator model can be used to predict interfacial shear
stress `far' from the tips of the actuator (two times of the thickness of the actuator, for example).
However, it should be mentioned that most sheet-actuators have high length-to-thickness ratio. In these
situations, the current explicit model can be used to predict the load transfer between the actuator and
the host structure analytically in an e�cient manner.

5.3. SSSF due to edge debonding

The high shear stress concentration at the edges of the actuator may result in an interfacial debonding
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of length d, as shown in Fig. 11. As mentioned in Section 3.1, a debonded actuator can be regarded as a
shorter actuator. Therefore, the e�ective length of the actuator is reduced from its original length 2a to
2ae�=2aÿd. It is interesting to note that with the growth of debonded length, the shear stress
singularity factor S decreases. When S reaches the `interfacial toughness' Sc, the debonding will stop
growing, as illustrated in Fig. 12. This result indicates that an edge debonding will self-arrest following a
period of growth leading to a reduction in the e�ective length of the actuator to ac.

5.4. SSSF due to central debonding

The imperfect bonding in the fabrication process of smart structures may also result in interfacial
debonding between the actuator and the host structure. For the general case of central debonding (Fig.
13), the debonded part will not experience interfacial shear stresses. However, its actuation e�ect upon
the structure will not disappear, as in the case of edge debonding. In this case, the debonded region will

Fig. 9. Normalized SSSF of a single actuator.

Fig. 10. Interfacial shear stress distribution.
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a�ect the structure by applying an axial stress to the remaining parts of the actuator. Fig. 14 shows the
normalized quasistatic shear stress singularity factor S� � ÿS=p ������

ph
p

due to a symmetric central
debonding. A signi®cant increase of S� is observed when the tip of the debonded region approaches the
end of the actuator. Fig. 15 shows the normalized axial stress s�=ÿsd/p, in the debonded part of the
actuator.

6. Concluding remarks

A general analytical solution is provided to the coupled electromechanical behaviour of a piezoelectric

Fig. 11. Edge debonding of an actuator.

Fig. 13. Central debonding of an actuator.

Fig. 12. Self-arrest of edge debonding.
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actuator bonded to a host under plane electric loading. The analysis is based upon the use of a
piezoelectric line model of the actuator which reduces the problem to the solution of singular integral
equations of the ®rst kind. The newly de®ned shear stress singularity factor provides a description of the
local stress ®eld around the tip of the actuator, which represents the singular behaviour of the interfacial
crack.

The validity of the present model hase been demonstrated by application to speci®c examples and
comparison with the correspond results obtained from Finite Element method. Furthermore, the e�ect
of the shape of the actuator, the material combination and the electromechanical coupling upon the
resulting shear stress singularity factor of the actuator are examined and discussed.

Fig. 14. The SSSF of a centrally-debonded actuator.

Fig. 15. The normal stress in a centrally-debonded actuator.
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Appendix A. E�ective material constants

The mechanical and electrical properties of piezoceramic materials can be described fully by:
The equation of motion

sji,j � fi � r �ui:

Gauss' law

Di,i � 0:

The constitutive equations

fsg � �c�fEg ÿ �e�fE g, fDg � �e�fEg � �E�fE g,
where

Eij � 1

2
�ui,j � uj,i �, Ei � ÿV,i:

In these equations, {s } and {E } are the stress and the strain ®elds, fi and r are the body force and the
mass density, while {D }, {E } and V represent the electric displacement, the electric ®eld intensity and
the potential, respectively. [c ] is a matrix containing the elastic sti�ness parameters for a constant
electric potential, [e ] represents a tensor containing the piezoelectric constants and [E ] represents the
dielectric constants for zero strains.

According to the electroelastic line actuator model, the e�ective material constants of the actuator
model are given by

Ea � c11 ÿ c213
c33

plane strain,

ea � e13 ÿ e33
c13
c33

plane strain

and

Ea � E33 � e233
c33

plane strain,

where the direction of polarization is designated as being the z-axis.
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